Datasets in ” Heuristic solutions to minimise
makespan in a hybrid flow shop scheduling
environment with energy consumption constraints
in steel making”

Brighton Miyelani Baloi, 14202469
April 19, 2024

0.1 Main algorithm

Main Algorithm
//Comment: Step 1 - use small number of runs for all problem sizes
Use the general processing time matrix and all LLHs as inputs
For every LLH
Allocate machines based on the current processing rule
Create the actual processing time based on the current LLH rule
For every job sequencing rule
Sequence job using the current sequencing rule
Select the sequence with the best makespan
Reoptimise for energy constraint
Save the best makespan and energy level
endFor
endFor
Return the best LLH

//Comment: Step 2 - use large number of runs
Use the selected LLH and as input
For each job sequencing rule (IHNEH/GA) for all problem sizes
Input selected LLH
Schedule jobs using the current sequencing rule
Find the optimum makespan sequence
Improve best sequence using neighbourhood search
Re-optimise for energy constraint
Record best improved makespan sequence and energy level
endFor

//Comment: Step 3 - solution performance evaluation

Solve small sized problems with the branch and bond algorithm

For each sequencing algorithm (IHNEH and IHGA)
Compare the solution quality of small sized problems to branch and bound solution
Compare the time behaviour of proposed algorithms for medium and large problem sizes
Compare the solution quality of proposed algorithms for medium and large problem sizes

endFor

Figure 1: The pseudocode for the main algorithm.



Figure 2: The three main steps of the main algorithm



0.2 The Hyper Heuristic

Property LLH 1 LLH2 LLH3 LLH4 LLH5 LLH6
position of jobs Y N N Y Y Y
processing time N Y Y Y N Y
attack time N Y Y N N N
speed scaling N Y Y Y N Y

Table 1: Design structure for the LLHs.




LLH1:
Assign first set half of jobs to the slower and the rest to the faster machine

LLH2:

Assign job, first to machine with fast attack time if it is available

Else, assign job to the machine with the slow attack time, if it is available
Else wait for the first machine to be available

When half of the jobs have been processed

If the 50 percent of the energy threshold has been exceeded

Reduce processing speed (divide by 2)

Increase processing time (multiply by 2)

Continue processing with the new speed and processing time
Else

Continue processing with the original speed and processing time
endIf

LLH3:

Assign job, first to machine with slow attack time if it is available

Else, assign job to the machine with the fast attack time, if it is available
Else wait for the first machine to be available

When half of the jobs have been processed

If the 50 percent of the energy threshold has been exceeded

Reduce processing speed (divide by 2)

Increase processing time (multiply by 2)

Continue processing with the new speed and processing time
Else

Continue processing with the original speed and processing time
endIf

LLH4
Assign first set half of jobs to the slower and the rest to the faster machine

When half of the jobs have been processed

If the 50 percent of the energy threshold has been exceeded

Reduce processing speed (divide by 2)

Increase processing time (multiply by 2)

Continue processing with the new speed and processing time
Else

Continue processing with the original speed and processing time
endIf

LLH5
Assign first set half of jobs to the faster and the rest to the slower machine

LLH6
Assign first set half of jobs to the faster and the rest to the slower machine

When half of the jobs have been processed
If the 50 percent of the energy threshold has been exceeded
Reduce processing speed (divide by 2)
Increase processing time (multiply by 2)
Continue processing with the new speed and processing time

Figure 3: The algorithms of the LLHs.




0.3 NEH algorithm

For every job

Calculate the sum of the processing times over all machines
endFor
For every job

Order the jobs in a descending order of total processing time
endFor

Form a partial sequence using the first two jobs
Find the permutation with the smallest makespan
For job = 3 to the last job
Insert job j in all possible locations in the current partial sequence
Calculate makespan for each position of insertion
Return the partial sequence with the minimum makespan
endFor

Figure 4: NEH pseudocode.

0.4 The genetic algorithm

Initialise all simulation parameters
nlteration, propRetained, numMutation, popSize, chromPopulation,
optMakespan, optChrom

Evaluate population fitness of chromosomes and rank them
Calculate makespan for each chromosome
Rank chromosomes in ascending order of makespan

Repeat for iteration 2 until niteration

Retain top chromosomes for reproduction (use propRetained)

Repeat until new population is created
Select two chromosomes from retained chromosomes

use roulette wheel rank-based selection

Create offspring through crossover and put in new population
Repair offspring from gene duplication and omission
Mutate offspring (use numMutation)

endRepeat

Evaluate fitness of new chromosome population and rank them
Calculate makespan for each chromosome

Rank chromosomes in ascending order of makespan

Update optMakespan and the optChrom
endRepeat

Figure 5: GA pseudocode.

0.4.1 The branch and bound procedure



Set all jobs as unscheduled
While there is still an unscheduled job

While not yet at the leaf node
If optimality condition fails
Compute makespan Lower Bound (LB) for all jobs
Select the job with the minimum LB and branch
Remove the job selected from unscheduled jobs
Else
Bubble up from node
endIf
endWhile

If job is leaf node
Calculate makespan
Calculate energy consumed
If energy consumed is below threshold
Update optimal makespan and energy level
Else
Return last scheduled job to unscheduled list
Bubble up from node
endIf
endIf
endWhile

Figure 6: The modified B&B pseudocode.



